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S U M M A R Y  
When using Shuman's filtering operator in the numerical computation of shock waves, nonlinear instabilities are 
prevented, but high order accuracy is lost even in smooth regions. In order to preserve second or higher order accuracy 
in these regions, an automatic switched Shuman filter is constructed. Nonsteady shock calculations in one and two 
spatial dimensions, demonstrate the usefulness and accuracy of the method, including examples with third and fourth 
order accurate finite difference schemes. 

1. Introduction 

In [-1] Vliegenthart has shown how to apply Shuman's method of filtering short wave compo- 
nents for shock calculations. Taking a quasi-linear hyperbolic system in conservation form, 
namely 

U, = [e (u ) ]x  ([F(U)]x - A ( U ) . U ~ ) ,  (1) 

Vliegenthart uses the following finite difference scheme 

Ui I (Ui+1 ~" "+ -F i_x )  (2a) = + U,_ 1)/2 + ~ (F,+x ~" 

~n n + l  gTn+ 1] U"; +~ = Ui + 2 (Fi+t - ~ -  1, (2b) 

[Tin+2 _t_ ~ f n +  2 = w , + l r - - ,  +U~-+2)/4 (2c) 
where 

2 = At/h (h = A x ) ,  and U7 = U(ih, t , ) .  

The first two difference equations form the second order accurate two step method due to 
Richtmyer; (2c) is a Shuman filtering operator which reduces the accuracy everywhere to first 
order. 07 +2 is taken as the numerical solution at x i=  ih and t,+ 2 = t ,+  2At. 

In two spatial dimensions the system is, 

Wt = [ F ( W ) ] x +  [G(W)],  (3) 

where F~-A.W~ and G r = B - W  r. The scheme suggested in [1] for solving (3) is: 

w,71 (#7+,,j+ -" -" = W i _ l , j +  i , j + l + W i ,  j - 1 ) / 4  + 

2 - F "  2 ~, x - G i ,  j -~)  (4a) +  (vVT+ ,j + - .  

.Wi~+2 - n  n + l  n + l  n + l  = Wi j+2(F~+I , I_F~_I , j )+Z(Gi ,  j + ~,,+1 1 -- v i ,  j -  1) (4b)  

~#rn/ 2 II/u'n+ 2 • w n +  2 •  + w n +  2 " = t , , ~ + l , j ~  i - l , ~ , , i , j + l  i,j_m)/4. (4c) 

Vliegenthart found that these schemes, although producing first order accuracy results, 
yield much sharper shocks than with the staggered-Lax scheme (see [7] ) and other first order 
schemes. 

We suggest here the use of the same Shuman method in a selective fashion, namely to con- 
struct schemes that will automatically switch-on the numerical filter only at the shock waves. 
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208 A. Harten, G. Zwas 

By doing so, the order of the basic scheme is preserved except at shock regions, even when the 
basic accuracy is of an order higher than the second. 

In this way it will be possible to construct different schemes which are especially suitable for 
solving hyperbolic systems with discontinuous solutions. 

All the numerical results reported herein were calculated with a CDC-6600 computer at the 
Tel-Aviv University computation center. 

2 .  T h e  O n e - D i m e n s i o n a l  C a s e  

Let L be the basic finite difference operator of second (or higher) order accuracy, and consider 
the scheme 

W7 +1 = L. if'7 (5a) 

i~7+1 = --,w"+ x +�88 rm+l t w . + l  _ WT+ 1)_ a.+ 1 (WT+ 1 _ w ,+  1 ~ 7 , ,  i-1,3 (5b) LWi+~ I ' "  i+1 v i - ~  

where 0 is the automatic switch. I f 0 =  1 then (5b) is a simple Shuman filter. It is of importance 
to introduce 0 in a conservation form in order to assure correct shock velocities. The right-hand 
side of (5b) approximates [W+�88 § and is therefore in conservation form. 

Let us first take L to be the Lax-Wendroff scheme 112] in which case (5a) takes the form 

2 ~. 22 
= -Ai_~(F i - F  i_ - F , - 1 )  + ~-[-Ai+~(F,+I-PT) 1)] (6) WT+l 1~ 7 + ~(Fi+l  ~, z. ~, z. - .  ~., 

where " - ~" ff'7)/2). Ai+~-A((Wi+l + 
The automatic switch 0 will be of a pseudo viscosity type but so normalized that 

O(1) in shock r e g i o n s ,  
0 = (7)  

O(h r - i )  in smooth regions, 

where r is the order of accuracy of L (in (6), r = 2). The structure of 0 will be dealt with later 
but we already see that in smooth regions if'7 + a = W7 + 1 + O (h' + 1) and the order of accuracy 
is preserved. 

The linear stability analysis is performed in the usual way, taking the matrix A to be locally 
constant. Let us denote by Gk and Gk the amplification matrices corresponding to the linearized 
difference operator L (taken from (5a)) and the over-all linearized operator L ((5a) substituted 
into (5b) after linearizing). 

Using the same approach as Von-Neumann and Richtmyer (see [3] or [4] w we treat 
0 as being locally constant while performing the Fourier transform and only afterwards will 
O's variation be taken into account due to the fact that 0 will be a nonnegative dimensionless 
bounded quantity. The bound, as we shall see later, is 2/d where d is the number of spatial 
dimensions. 

If we now denote by S the amplification matrix corresponding to the filtering step (5b), we 
find that 

S =  (1-Osin2 ~ ) I  (8) 
and - 

G(L) = S. G(L) (9) 

where ~ = k. h is the dual variable after the usual Fourier transform and k is any Fourier fre- 
quency. As Vliegenthart [-1] pointed out, S has a damping effect and since it is real the phases 
of the Fourier components are unaffected. If we now impose 0 <  0 <  2 then for every 4, 141 < n, 

1 - 0 s i n  2~  < 1 (10) 

and since G (L) = (1 - 0 sin 2 �89 G (L) the stability of L implies the stability of E. If L is the Lax-  
Wendroff operator, this will mean that the criterion 
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At 1 
2 = ~-  < P (A-~ (p (A) = largest eigenvalue of A),  

assures linear stability also for the compound scheme ((5a)+ (5b)) provided 0 <  0 <  2. 

(11) 

3. The Two-Dimensional Case 

When dealing with several spatial dimensions, we shall insert switched numerical filters, one 
for each dimension. In two dimensions we write, 

W.~+I = L. #i~ (12a) tJ 

~rn..+ 1 n+ 1 • 1 FOX [l/ l fn+ 1 1/17n + 1"~ /:Ix (l.,tTn + 1 w n +  1 "~] 
~j : W i j  ~ 4 L t ' i + � 8 9  "" i + l , j - - "  i j  ] - - u i - ~ , , ,  �9 ; i r v  i'j - -  i - l , j I J  

+ 4 [ O i ,  j +  � 8 9  y [ w n +  1 __ 1/17n + 1~ - -  vi/:lY, j_~_; 1 I,,[I/lZn+i'j 1 _ w ,+  1 ~-I . (12b) ~ ' '  i , j + l  , r  i j  1 , r  i , j - l l J  

L can be the two-dimensional Lax-Wendroff  scheme, or the Richtmyer two-step method, or 
any other scheme of second or higher order of accuracy. (12b) is again written in conservation 
form, since its right-hand side approximates W+�88 x W~)~+�88 r Wy)y. Again, if the 0's 
were 1, then (12b) would coincide with (4c), the regular Shuman filter. 

The linear stability analysis for two dimensions is an extension of the one-dimensional case, 
which gives us two-dimensional versions of (8) and (9); only this time 

( ~ 0Y sin2 ~ ) 1  (13) S =  1 - 0  x sin 2 ~ -  

where ~ = k" h, r/= l" h are the dual variables, k and I the Fourier frequencies. Imposing, 

1 - 0  x sin 2 }~ - 0r sin2 r/<~ = 1 for all I~1; It/l< z =  (14) 

leads to the condition 0 < 0~; Or< 1 which assures that if L is stable then so is the two-dimen- 
sional compound scheme ((12a)+ (12b)). 

4. The Automatic Switch 

Up to now we imposed on the 0's the following properties: 
(i) sensibility to shock-like discontinuities (0= 0(1) at shocks), 
(ii) representation in conservation form, 
(iii) absence of effect on the accuracy in smooth regions (0= O(h r- 1)), 
(iv) preservation of the linear stability of the basic scheme. 

From (i), (iii) and (iv) we see that a switch 0 must attain its maximum at the shock (at the 
strongest shock if there are a few); this maximum must be bounded by 2/d where d is the number 
of spatial dimensions. 

It is also desired that on both sides of the shock region the switch will decrease sharply to 
O (h r- 1), where r is the order of accuracy of the basic scheme. 

Let us first consider the one-dimensional case were A = A  (W) and where the eigenvalues of 
A are real since hyperbolicity is assumed. Next we consider any function of the dependent 
variables which is a good sensor of shocks. We select here as Such a function #, the largest 
eigenvalue of A ; this is done only for the sake of simplicity. One possibility for 0 is to use a 
normalized pseudo-viscosity, like : 

=z( I#,+_1-#,1 0~+~ (15) \ Max 1#i+1-#zlJ 
1 

where m > r -  1 (property (iii)) and Z is a positive constant not larger than 2/d. The switch (15) 
can be substituted into (5b) which is in conservation form ; it is a dimensionless quantity which 
serves as a mathematical device without having any physical or pseudo physical meaning. 
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At the sharpest gradient within the shock region, I#i+l-#i[=O(1) and 0=Z. In smooth 
regions 0 = O (h m) < 0 (h'- 1) since then 1#~+1 - #i[ = O (h). Whenever the solution contains 
shocks the denominator in (15) is 0 (1), a fact that is uneffected by mesh refinements. This is so, 
since for suitable basic schemes, like that of Lax and Wendroff, the number of cells in a shock 
is independent of h, namely, refinement of the grid implies sharper shocks. 

The fact that 0 is normalized is very beneficial in our analysis, but can be dangerous in the 
following situations : 

(1) When the solution is (or still is) continuous and the order of accuracy of the basic scheme 
is desired everywhere. 

(2) When the solution contains, in addition to shocks, strong rarefactions so that there is a 
possibility of getting the maximum 0 at a rarefaction. This will not occur for a fine enough 
grid since mesh refinements do sharpen shocks but do not change rarefaction gradients. 

A remedy for these situations can be to insert a check which allows the use of the filter only 
for strong enough shock-like gradients. In addition a much sharper 0 can be used as for example, 

expI' 
In dealing with hydrodynamic problems we can also use a method proposed by Rosenbluth 

(see [4] p., 313), namely, allow 0 # 0 only where compression occurs. Doing this, expression (15) 
takes the form, 

Z \M~xx [-#~+ ~ #z[] (---)(#i +1 - #i)< 0 ,  compression 
Oi+_~ = (17) 

�9 0 (-+)(#z+l-#i) =>0, rarefaction 

The quantity (#i+ 1 --~i) changes sign when crossing from rarefaction (diverging characteris- 
tics) to compression (converging characteristics); the appropriate sign depends on the choice 
of/z and the independent spatial variable. Similarly with (16) where in both cases the maximum 
is taken over compression regions only. On Z we impose, 0 < Z < 2/d so that the linear stability 
condition is unchanged. A larger Z within this range will yield, as can be expected, smoother 
results but wider shocks. The best numerical results were obtained for 1<  Z< 1. 

These methods deal very well with cases containing several shocks. For example, problems 
of shallow flows over a ridge were very successfully solved with the proposed methods*. In 
such cases it is best to take the minimal m required by the basic accuracy, namely m = r -  1, in 
order to prevent insufficient filtering at the weaker shocks. 

The extension to more dimensions is done by constructing one 0 for each direction. In two 
dimensions we define 0 x and 0 y as 

0 x �9 _ /( I#i+l , j-#i j l  ~m (lSa) 

\ I,k Z 1) 
( I#,,s+,-#,si 

0~, ,+ �89 = Z tM, a x [#,,k+, -- #,,k[) (18b) 

Here 0 < Z < 1 so that 0 < 0x; 0Y< 1. The extension to three dimensions is obvious. 

5.  N u m e r i c a l  R e s u l t s  in O n e  D i m e n s i o n  

Among the one-dimensional problems that were actually solved we will mention two sets of 

* These results were obtained by U. Asher of Tel-Aviv University, who used (17) with m = 1, with the Lax-Wendroff  
scheme. 
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examples. (1) A mathematical model-equation with a known solution used for checking our 
methods and the accuracy achieved in smooth regions. (2) A one-dimensional hydrodynamic 
shock for checking a simple engineering problem and testing the correctness of the numerical 
shock-speed. 

First we took the equation 
ut + uux = 0 (19) 

with the initial conditions 

u (O ,x )=  l - x ,  O < x < l  (20) 

- 1 ,  1_<x<2 

, 2 < x  

In this case there is a compression region which will yield a shock at the time t = 1, and a 
rarefaction region with gradients decreasing in time. The exact solution is, 

1 x < t  

1--x  
t< x<  1 

1 - t  
u (x, t) = - (0< t<  1 continuous), 

. x - - 1  
l < x < 2 + t  

t + l  

1 2 + t < x  

(21) 

t x < 2 + t - z  

x--1 
u(x t ) =  t + l  2 + t - ' c < x < 2 + t  ( l < t ,  z = ( 2 + 2 t )  ~ discontinuous). 

1 2 + t < x  

This example Was suggested to us by M. Goldberg [9]. The results after 300 time steps are 

N=~O0 

o.iI 

o 

0.7 

I 
- 1 . 0  

Figure 1. 

I I I I I 
19.0  
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plotted in Fig. 1 together with the exact solution. In all the cases we took h = 0.05 and 0 < x < 20. 
Graphs (la), produced with the first order Lax scheme [7], and graph (lb) with the L-W scheme 
[2], are plotted for comparison purposes. It should be noted that although u is sectionally 
linear in x, the Lax-Wendroff term does contribute in the rarefaction region since u,, does not 
vanish there. Graphs (ld)and (lc) show the results produced by our method with r = 2, m = 1, 
and Z=0.5; 1. Notice the correctness of the shock speed and the high accuracy everywhere 

�9 except at the shock itself. This high accuracy is such that the numerical values Corresponding 
to graphs (lb) and (ld) are the same up to 6 significant decimal places in the smooth regions. 
By comparing (ld) with (la) it is clear how superior our results are compared to those obtained 
with the first order Lax scheme, including the shock region. 

The results shown in Fig. 1 were typical. Using as initial conditions for (19), a shock-like 
step function, again gave the correct numerical shock speed, the damping of the post shock 
oscillations and nearly second order shock profiles. As an example of using our method to- 
gether with difference operators of orders higher than the second, we solved (19)-(20) with 
third and fourth order methods as basic schemes. These basic schemes are extensions of the 
Lax-Wendroff method constructed by Zwas and Abarbanel [8]. The Burstein-Mirin three 
step method [10], could also be used as the basic scheme. 

In figures (2a), (2b) and (2c) we bring the results of third order accuracy with x = 0; 0.5 ; 1, 
respectively; Figures (2d) with x = 0 and (2e) with x = 1 show the results obtained with a fourth 
order accurate scheme [8], after 300 time steps. We have used (17) with m= 3 and the results 
again differ from those without filtering only in the shock region. The sharp shock and the 
very small errors, especially near the end of the rarefaction wave, demonstrate the high order 
accuracy of the basic schemes. 

"[ 
Q7 

o. E 

I 

Figure 2. 

2d 

I I 

2e  

I [ I 
190 

6. One-Dimensional Hydrodynamics 

As a second one-dimensional example the hydrodynamic system of equations in Lagrangean 
formulation was solved. We took the simple engineering problem of a stationary shock, 
moving in a polytropic gas; the equation therefore are ([4] chap. 12): 
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Here V, u, E and P are the specific volume, the velocity, the total energy per unit mass and the 
pressure, correspondingly. The pressure is given by, 

e = (~-  1 ) ( e -  u2/2)/V (23) 

where ~ is the polytropic constant. 
The eigenvalues of A = grad F, (F r =  (u, - P ,  -Pu)), are 0, + c where c is the Lagrangean 

sound speed given by (yP/V) �89 We used the Lax-Wendroff scheme with the switch I Ici+l-c,I 
Z Max [Ck+l--Ck[ when ci+l-ci< 0 

0i+~ = (24) 

0 elsewhere. 

The actual c~ases solved were a larger number of cases with different values of 7 and different 
pressure ratios at the shock (namely different shock strengths) corresponding to the cases 
solved by Abarbanel and Zwas in [5] with other methods. Typical results are shown in Fig. 3, 
with 7 = 1.4, pressure ratio of 10 and after 200 time steps (graph 3c). For comparison the results 
without filtering (3b), and with the first order Lax scheme (3a) are plotted. The shock speed for 
(3c) is as good as for (3b). 

12 

8 

4 

0 
82. 

x 

Figure 3. 

8 

4 

I 0 
123 

3b 12 

8 

I I I 
8.2 1~3 04.t 812 12,3 
x x 

The shock width with the filter (24) is almost the same for different shock strengths and 
polytropic constants, where as the overshoot without filtering is very much larger for strong 
shocks (compare with the results in [5]). 

All the conclusions arrived at for the single equation (19)were found to be valid for the sys- 
tem (22). 

Of  course the Lax-Wendroff method could be used with artificial viscosity terms too ([-2], 
[4]), but this is much more time consuming, complicated and much harder to generalize to 
several dimensions. This will be demonstrated in the two dimensional cases. 

7. Two-Dimensional Results 

We chose the example of calculating a detached shock in front of a rectangular body moving 
with constant supersonic speed along its axis of symmetry. This problem was suggested and 
solved by Burstein [6], who used the Lax-Wendroff two-dimensional scheme with two one- 
dimensional artificial viscosity terms. First order accurate results were obtained by Vliegenthart 
who used a two step method with Shuman filtering everywhere. Vliegenthart [-1] found much 
better results than with other first order methods. 
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In order to submit our scheme to a real hard test we chose impulsive initial conditions, i.e.; 
the rectangular body appeared impulsively at t = 0 in the supersonic flow. 

As our basic scheme we took the L-W method in two dimensions, as Burstein did [6], 
namely, 

W.,+ 1 2 ,, = Wi5 + ~ [(FT+ 1,j - v n -  1 , j ) ' q - (Gn ,  j + l  - -  Gin, j - 1)] 

22 
+ -~ {AT+r a [(Fi+" 1, j-Fij)+a(Gi+" 1 n 1 , j + 1  + a n  j + l  - -  Gi+n 1 , j - 1  - Gi, 1 ) ]  

_ _ a n _ ~ , j [ ( r n j  n 1 ,, n n n - F i -  *, j)+a(Gi, a+ l + Gi- 1,j+ , - Gi ,  j - 1  - Gi- 1 , j - - 1 )  ] } 
2 2 

, , G i j ) + - ~ ( F i + I , j + , + F i + I , j - F i _ I , j + , - F i _ I , j )  ] + . , . . . . 

- B T ,  j -  1 . . . . 1 ) + ~ ( F i + l , j + V i + l , j _ l - V i _ l , j - r i _ l , j _ l ) ] } .  (25) 

For the two-dimensional compressible polytropic fluid flow in Eulerian coordinate, W, A, B, F 
and G are given by: 

In: 
W =  ; A = g r a d F  ; B = g r a d G ,  

[;j 
1 

F =  _ 

m 

~ - 7 + 3  m 2 n 2 

2 p (1-7)  E - ~p 
t 

Inn 

P 

1 - 7 In 7mE 
2 p2(in2+n 2) + _ _  

P 

, G =  - 

n 

m n  

P 
- 7 + 3  n 2 m 2', 

2 p (1-7) E - ~ 

1 -  y n 7hE 
2 p2( m 2 + n e ) + -  

P _ 

(26) 

Here p, m, n and E are the density, the momentum in the x-direction (i.e., m = pu), the momentum 
in the y-direction (i.e., n = pv), and the total energy per unit volume; 7 is the polytropic constant�9 
The eigenvalues of A are u, u +__ c, and the eigenvalues of B are v, v_  c, where c is here the Eulerian 
speed of sound given by (TP/p) ~ and P is the pressure given by P =  (7-1)  [ E - ( m E +  n2)/(2p)]. 
As pointed out earlier, it is not necessary to use the eigenvalues for constructing the switches ; 
any function which is a good sensor of shocks is suitable�9 We chose the following simple switches: 

OX _ .(_ [Pi+l, j-Pi,  j[ "~z (27a) 
i+~-,~- ~: \max [pt+~,k--pl, k],] 

2 
( I P i ,  j+_ll_-Pi, j___J :'~ (27b) 

0~,j+~ = Z \max [Pl, k + l - - P l , k l /  

where the maximum is taken over compression regions only, and Z will be specified in (29). 
In (27) the pressure P can replace the density if desired. The quadratic 0's were chosen to ensure 
sharp switches which will produce sharp shocks. The boundaries were treated according to the 
suggestions in [1], except that we took higher order extrapolations whose directions fall into 
the appropriate domain of influence. 

We show below some results of stationary density profiles along lines parallel to the axis of 
symmetry, for different values of y. The initial conditions for the figures below were 
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= 1 . 4 ,  P = I ,  p = l ,  n = 0 ,  m = 5  ( n a m e l y a M a c h n u m b e r o f ~ 4 . 2 3 ) ,  

and an impulsive appearance of the body at t = 0 .  (28) 

Graph (4a) shows the results with our method, graph ( 4 b ) -  with Burstein's method. In both 
runs the geometry and mesh size were taken exactly as specified in [-6]. 

~ d ,2  

~ d = 5 4  

4=22 

d=ll 

I X I I I 23.0 

5 . 0  

o 

t 

0.0 

I i 
ID 

5 . 0  

0.0 

Figures 4a and b. 

d=2 

/d=34 

d=22 

j J= II 

For the results shown in (4b) the artificial viscosity constant was taken as 2 (Z = 2 in formula 
(5.3a) in [6]) ;  with the value of 1, nonlinear instabilities arise and terminate the run, even when 
changing the constant from 2 to 1 after several hundred of cycles�9 The results in (4a) were ob- 
tained with (27a) and (27b) where, 

Z= �89 {1 pi+t,j--po>O 
�9 in (27a) (29a) 

pi+l,j--Pij<= 0 
and 

Z=�89149 { 1 pi, j+,-p~j<O in(27b). (29b) 
O~ Pi, j+l- -Pl j~O 

We propose to take ct = 0 in general, but for the present problem it was necessary to take a 
small positive ~ because of the strong rarefaction gradients near the corner ; we have taken 
~=0.1. 

The constant ~ should be small enough so that the 0 near the corner will be much smaller 
than the maximal 0 obtained at the shock. At all the other smooth regions, (27) yields 0 = 0 (h2), 
which is even one order higher than needed to ensure second order accuracy�9 

It is to be expected, that ~ = 0 can be taken for aerodynamical bodies having continuously 
differentiable surfaces�9 The need for a small positive ~ in our problem is necessitated by the 
corner singularity. 

Fig. 5 s h o w  our results of the flow field with the stationary detached shock and sonic line, 
after 2000 cycles and for the initial conditions (28). Our steady state results and those of Burstein 
are practically identical except for small differences near the corner�9 These differences (Fig. 5) "' 
are much smaller for ~ = 0.05�9 Our results show that the sonic line meets the body at the corner 

J 21 

2 

Figure 5. 

shOck 

sonic l ine 

i\\\ x 
12 18 23 

i 
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in contrast to first order results where the sonic line reaches the body 3-4 cells behind the corner 
(see Fig. 6 in [6]). 

Our results show smoother shock transitions than in [6], however the shock occupies 
4-5 cells, compared to 3-4 cells when using Burstein's method (see figures (4a), (4b)). Our 
stagnation values were found to be closer to the exact values than those we obtained with 
Burstein's scheme. 

Again, as with the artificial viscosity, the size of the constant g should be chosen, so as to 
achieve a compromise between the smoothness and the sharpness of the profiles. For the 
initial conditions (28), both methods need approximately 2000 cycles in order to reach the 
steady state. 

A great advantage of our method is in the saving of computing time; it takes less than half 
the time per cycle, compared to Burstein's scheme. The switched Shuman filter can be very 
easily extended to three dimensions, where the computing-time savings are even greater. 

Two dimensional switched numerical filters can be associated with third and fourth order 
schemes too [11]. The accurate results in the one-dimensional case (Fig. 2) give reason to 
believe that this approach is promising also for several dimensions. A final remark is that 
switched Shuman filters can be easily added to existing computer programs in order to deal 
with problems containing discontinuities. 
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